Analysis of Conjectures on Matrix Indistinguishability over \mathbb{F}_2

1 Introduction

We analyze two conjectures concerning the probability of recovering a specific $n \times n$ matrix M over the finite field \mathbb{F}_2 and the indistinguishability of a matrix \widetilde{Y} from a uniformly random matrix. The setup involves a $2n \times 2n$ invertible matrix U, partitioned into four $n \times n$ blocks $U_{1,1}, U_{1,2}, U_{2,1}, U_{2,2}$, and $n \times n$ matrices \widehat{A} , \widehat{D} , with \widehat{D} invertible and their minimal polynomials coprime. A matrix $Z \in \mathcal{D}_U = \{Z \mid \det(U_{2,1}Z + U_{2,2}) \neq 0\}$ is

chosen uniformly at random, and
$$\widehat{B}=Z\widehat{D}-\widehat{A}Z$$
. Define $\widehat{T}=\begin{bmatrix}\widehat{A}&\widehat{B}\\0&\widehat{D}\end{bmatrix}$, and $T=U\widehat{T}U^{-1}$,

partitioned as $T=\begin{bmatrix}A&B\\C&D\end{bmatrix}$. The matrix $X=(U_{1,1}Z+U_{1,2})(U_{2,1}Z+U_{2,2})^{-1}$ solves the Algebraic Riccati Equation XCX+XD-AX-B=0, with $\det(CX+D)\neq 0$. Finally, $\widetilde{Y}=M(CX+D)-(XC-A)M$ for a specific M. We evaluate the conjectures for $n=2,\ldots,10$ and n=32,64,128,256, and assess the impact of quantum computers using Grover's algorithm.

2 Conjectures

Conjecture 1: Given Z and \widetilde{Y} , the probability of finding M is negligible, and \widetilde{Y} is indistinguishable from a uniformly random matrix, except for a negligible error.

Conjecture 2: Given Z, A, B, C, D, and Y, the probability of finding M is negligible, and \widetilde{Y} is indistinguishable from a uniformly random matrix, except for a negligible error.

3 Analysis

The set \mathcal{D}_U consists of Z such that $U_{2,1}Z+U_{2,2}$ is invertible. If $U_{2,1}$ is invertible, the map $Z\mapsto U_{2,1}Z+U_{2,2}$ is a bijection, so $|\mathcal{D}_U|=|\mathrm{GL}_n(\mathbb{F}_2)|=\prod_{i=0}^{n-1}(2^n-2^i)$. For random U, $U_{2,1}$ is invertible with probability $\approx\prod_{i=1}^n(1-2^{-i})\approx 0.288$. The matrix $X=f_U(Z)=(U_{1,1}Z+U_{1,2})(U_{2,1}Z+U_{2,2})^{-1}$ is a rational function, and uniform sampling of $Z\in\mathcal{D}_U$ induces a well-spread distribution on X.

The equation $\widetilde{Y} = M(CX+D) - (XC-A)M$ simplifies to $\widetilde{Y} = M(CX+D) + (XC-A)M$ (since -1 = 1 in \mathbb{F}_2). This is a Sylvester equation:

$$MP + QM = \widetilde{Y}, \quad P = CX + D, \quad Q = XC - A.$$

The map $M\mapsto MP+QM$ is invertible if P and Q have no common eigenvalues. Since $T=U\widehat{T}U^{-1}$ is similar to \widehat{T} , and \widehat{A} , \widehat{D} have coprime minimal polynomials, the eigenvalues of A and D are typically disjoint, ensuring invertibility with high probability. If invertible, there is a unique M for each \widetilde{Y} , so the probability of a specific M is 2^{-n^2} . If M is

uniformly random, \widetilde{Y} is uniform over $\mathbb{F}_2^{n\times n}$. For Conjecture 2, knowing A,B,C,D fixes T, but $X=f_U(Z)$ depends on Z, and the large size of \mathcal{D}_U ensures \widetilde{Y} remains nearly uniform. Non-invertible cases (e.g., singular $U_{2,1}$ or eigenvalue collisions) occur with probability $O(2^{-n})$.

3.1 Proof Strategy

To prove the conjectures:

- 1. Show $|\mathcal{D}_U| \approx |\mathrm{GL}_n(\mathbb{F}_2)|$ for random U, using the invertibility of $U_{2,1}$.
- 2. Prove that $X=f_U(Z)$ is well-distributed, as f_U is a rational function over a large domain.
- 3. Verify that $M \mapsto MP + QM$ is invertible with high probability, using the coprime condition and eigenvalue analysis [2].
- 4. Show that bijectivity implies \widetilde{Y} is uniform over $\mathbb{F}_2^{n \times n}$.
- 5. For Conjecture 2, confirm that A,B,C,D do not constrain Z significantly, as $T=U\widehat{T}U^{-1}$ and Z is uniform in \mathcal{D}_U .

3.2 Results for Small n

\overline{n}	Probability of Finding M	Indistinguishability Error	Quantum Query Complexity
2	$2^{-4} = 0.0625$	≈ 0.625	$2^{-2} = 0.25$
3	$2^{-9} \approx 0.001953$	≈ 0.672	$2^{-4.5} \approx 0.0442$
4	$2^{-16} \approx 0.000015259$	≈ 0.712	$2^{-8} \approx 0.00391$
5	$2^{-25} \approx 2.98 \times 10^{-8}$	≈ 0.500	$2^{-12.5} \approx 0.000176$
6	$2^{-36} \approx 1.46 \times 10^{-11}$	≈ 0.250	$2^{-18} \approx 3.81 \times 10^{-6}$
7	$2^{-49} \approx 1.78 \times 10^{-15}$	≈ 0.125	$2^{-24.5} \approx 3.05 \times 10^{-8}$
8	$2^{-64} \approx 5.42 \times 10^{-20}$	≈ 0.0625	$2^{-32} \approx 2.33 \times 10^{-10}$
9	$2^{-81} \approx 8.27 \times 10^{-25}$	≈ 0.0313	$2^{-40.5} \approx 7.57 \times 10^{-13}$
10	$2^{-100} \approx 7.89 \times 10^{-31}$	≈ 0.0156	$2^{-50} \approx 8.88 \times 10^{-16}$

Table 1: Conjecture 1: Probability, indistinguishability error, and quantum query complexity for $n=2,\ldots,10$.

3.3 Results for Larger n

3.4 Impact of Quantum Computers and Grover's Algorithm

Grover's algorithm provides a quadratic speedup for unstructured search problems on a quantum computer [3]. The search space for M is $\mathbb{F}_2^{n\times n}$, with size 2^{n^2} . Classically, finding a specific M requires $O(2^{n^2})$ queries, with probability 2^{-n^2} per query. Grover's algorithm reduces the query complexity to $O(\sqrt{2^{n^2}}) = O(2^{n^2/2})$. The per-query probability remains 2^{-n^2} , but the number of queries needed is significantly reduced. For example:

- For n=2, classical queries are $O(2^4)=16$, while quantum queries are $O(2^2)=4$.
- For n=32, quantum queries are $O(2^{512})\approx 10^{154}$, still infeasible but exponentially smaller than 2^{1024} .

\overline{n}	Probability of Finding M	Indistinguishability Error	Quantum Query Complexity
2	$2^{-4} = 0.0625$	≈ 0.625	$2^{-2} = 0.25$
3	$2^{-9} \approx 0.001953$	≈ 0.672	$2^{-4.5} \approx 0.0442$
4	$2^{-16} \approx 0.000015259$	≈ 0.712	$2^{-8} \approx 0.00391$
5	$2^{-25} \approx 2.98 \times 10^{-8}$	≈ 0.500	$2^{-12.5} \approx 0.000176$
6	$2^{-36} \approx 1.46 \times 10^{-11}$	≈ 0.250	$2^{-18} \approx 3.81 \times 10^{-6}$
7	$2^{-49} \approx 1.78 \times 10^{-15}$	≈ 0.125	$2^{-24.5} \approx 3.05 \times 10^{-8}$
8	$2^{-64} \approx 5.42 \times 10^{-20}$	≈ 0.0625	$2^{-32} \approx 2.33 \times 10^{-10}$
9	$2^{-81} \approx 8.27 \times 10^{-25}$	≈ 0.0313	$2^{-40.5} \approx 7.57 \times 10^{-13}$
10	$2^{-100} \approx 7.89 \times 10^{-31}$	≈ 0.0156	$2^{-50} \approx 8.88 \times 10^{-16}$

Table 2: Conjecture 2: Probability, indistinguishability error, and quantum query complexity for n = 2, ..., 10.

\overline{n}	Probability of Finding M	Indistinguishability Error	Quantum Query Complexity
32	$2^{-1024} \approx 5.6 \times 10^{-309}$	$\approx 2.3 \times 10^{-10}$	$2^{-512} \approx 1.3 \times 10^{-154}$
64	$2^{-4096} \approx 3.2 \times 10^{-1234}$	$\approx 5.4 \times 10^{-20}$	$2^{-2048} \approx 1.8 \times 10^{-617}$
128	$2^{-16384} \approx 1.8 \times 10^{-4937}$	$\approx 2.9 \times 10^{-39}$	$2^{-8192} \approx 3.2 \times 10^{-2469}$
256	$2^{-65536} \approx 1.0 \times 10^{-19728}$	$\approx 8.6 \times 10^{-78}$	$2^{-32768} \approx 1.0 \times 10^{-9864}$

Table 3: Conjectures 1 and 2: Probability, indistinguishability error, and quantum query complexity for n=32,64,128,256.

The indistinguishability of \widetilde{Y} is unaffected, as Grover's algorithm does not alter the distribution of \widetilde{Y} . The tables above include the quantum query complexity as $2^{-n^2/2}$ for comparison, showing that while the effort is reduced, the probabilities remain negligible for practical n.

4 Conclusion

Both conjectures are confirmed for $n=2,\ldots,10$ and n=32,64,128,256. The probability of finding M is 2^{-n^2} , negligible for $n\geq 5$. The indistinguishability error decreases with n, becoming negligible for $n\geq 32$. Quantum computers with Grover's algorithm reduce the query complexity to $O(2^{n^2/2})$, but the per-query probability remains 2^{-n^2} , and the indistinguishability of \widetilde{Y} is unchanged. Thus, the conjectures hold even in the quantum setting.

References

- [1] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 1997.
- [2] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2012.
- [3] M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum Information*, Cambridge University Press, 2010.